Noninvasive Methods for Lower Facial Rejuvenation

Published:August 01, 2018DOI:https://doi.org/10.1016/j.cps.2018.06.003

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Plastic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Statistics-American Society of Aesthetic Plastic Surgery. Available at: http://www.surgery.org/media/statistics2016. Accessed July 12, 2018.

        • Arnoczky S.P.
        • Aksan A.
        Thermal modification of connective tissues: basic science considerations and clinical implications.
        J Am Acad Orthop Surg. 2000; 8: 305-313
        • Ross E.V.
        • Yashar S.S.
        • Naseef G.S.
        • et al.
        A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig.
        Dermatol Surg. 1999; 25: 851-856
        • le Lous M.
        • Flandin F.
        • Herbage D.
        • et al.
        Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement.
        Biochim Biophys Acta. 1982; 717: 295-300
        • Bozec L.
        • Odlyha M.
        Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy.
        Biophys J. 2011; 101: 228-236
        • Lin S.J.
        • Hsiao C.Y.
        • Sun Y.
        • et al.
        Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy.
        Opt Lett. 2005; 30: 622-624
        • Hsu T.S.
        • Kaminer M.S.
        The use of nonablative radiofrequency technology to tighten the lower face and neck.
        Semin Cutan Med Surg. 2003; 22: 115-123
        • Despa F.
        • Orgill D.P.
        • Neuwalder J.
        • et al.
        The relative thermal stability of tissue macromolecules and cellular structure in burn injury.
        Burns. 2005; 31: 568-577
        • Farkas J.P.
        • Hoopman J.E.
        • Kenkel J.M.
        Five parameters you must understand to master control of your laser/light-based devices.
        Aesthet Surg J. 2013; 33: 1059-1064
        • Geronemus R.G.
        Fractional photothermolysis: current and future applications.
        Lasers Surg Med. 2006; 38: 169-176
        • Manstein D.
        • Herron G.S.
        • Sink R.K.
        • et al.
        Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury.
        Lasers Surg Med. 2004; 34: 426-438
        • Farkas J.P.
        • Richardson J.A.
        • Burrus C.F.
        • et al.
        In vivo histopathologic comparison of the acute injury following treatment with five fractional ablative laser devices.
        Aesthet Surg J. 2010; 30: 457-464
        • Oni G.
        • Robbins D.
        • Bailey S.
        • et al.
        An in vivo histopathological comparison of single and double pulsed modes of a fractionated CO(2) laser.
        Lasers Surg Med. 2012; 44: 4-10
        • Ozturk S.
        • Hoopman J.
        • Brown S.A.
        • et al.
        A useful algorithm for determining fluence and pulse width for vascular targets using 1,064 nm Nd:YAG laser in an animal model.
        Lasers Surg Med. 2004; 34: 420-425
        • Major A.
        • Brazzini B.
        • Campolmi P.
        • et al.
        Nd:YAG 1064 nm laser in the treatment of facial and leg telangiectasias.
        J Eur Acad Dermatol Venereol. 2001; 15: 559-565
        • Clark C.
        • Cameron H.
        • Moseley H.
        • et al.
        Treatment of superficial cutaneous vascular lesions: experience with the KTP 532 nm laser.
        Lasers Med Sci. 2004; 19: 1-5
        • Dudelzak J.
        • Hussain M.
        • Goldberg D.J.
        Vascular-specific laser wavelength for the treatment of facial telangiectasias.
        J Drugs Dermatol. 2009; 8: 227-229
        • Scheuer 3rd, J.F.
        • Costa C.R.
        • Dauwe P.B.
        • et al.
        Laser resurfacing at the time of rhytidectomy.
        Plast Reconstr Surg. 2015; 136: 27-38
        • Weinstein C.
        • Pozner J.
        • Scheflan M.
        • et al.
        Combined erbium:YAG laser resurfacing and face lifting.
        Plast Reconstr Surg. 2001; 107: 593-594
        • Hollmig S.T.
        • Struck S.K.
        • Hantash B.M.
        Establishing the safety and efficacy of simultaneous face lift and intraoperative full face and neck fractional carbon dioxide resurfacing.
        Plast Reconstr Surg. 2012; 129: 737e-739e
        • Ha R.Y.
        • Byrd H.S.
        Septal extension grafts revisited: 6-year experience in controlling nasal tip projection and shape.
        Plast Reconstr Surg. 2003; 112: 1929-1935
        • Cisneros J.L.
        • Rio R.
        • Palou J.
        The Q-switched neodymium (Nd):YAG laser with quadruple frequency. Clinical histological evaluation of facial resurfacing using different wavelengths.
        Dermatol Surg. 1998; 24: 345-350
        • Bencini P.L.
        • Luci A.
        • Galimberti M.
        • et al.
        Long-term epilation with long-pulsed neodimium:YAG laser.
        Dermatol Surg. 1999; 25: 175-178
        • Goldberg D.J.
        Laser- and light-based hair removal: an update.
        Expert Rev Med Devices. 2007; 4: 253-260
        • Tanzi E.L.
        • Alster T.S.
        Long-pulsed 1064-nm Nd:YAG laser-assisted hair removal in all skin types.
        Dermatol Surg. 2004; 30: 13-17
        • Alster T.S.
        • Bryan H.
        • Williams C.M.
        Long-pulsed Nd:YAG laser-assisted hair removal in pigmented skin: a clinical and histological evaluation.
        Arch Dermatol. 2001; 137: 885-889
        • Bernstein E.F.
        • Kornbluth S.
        • Brown D.B.
        • et al.
        Treatment of spider veins using a 10 millisecond pulse-duration frequency-doubled neodymium YAG laser.
        Dermatol Surg. 1999; 25: 316-320
        • Sadick N.S.
        Laser treatment of leg veins.
        Skin Therapy Lett. 2004; 9: 6-9
        • Rogachefsky A.S.
        • Silapunt S.
        • Goldberg D.J.
        Nd:YAG laser (1064 nm) irradiation for lower extremity telangiectases and small reticular veins: efficacy as measured by vessel color and size.
        Dermatol Surg. 2002; 28: 220-223
        • Eremia S.
        • Li C.Y.
        Treatment of leg and face veins with a cryogen spray variable pulse width 1064-nm Nd:YAG laser: a prospective study of 47 patients.
        J Cosmet Laser Ther. 2001; 3: 147-153
        • Holcomb J.D.
        Versatility of erbium YAG laser: from fractional skin rejuvenation to full-field skin resurfacing.
        Facial Plast Surg Clin North Am. 2011; 19: 261-273
        • Alster T.S.
        • Lupton J.R.
        Erbium:YAG cutaneous laser resurfacing.
        Dermatol Clin. 2001; 19: 453-466
        • Sapijaszko M.J.
        • Zachary C.B.
        Er:YAG laser skin resurfacing.
        Dermatol Clin. 2002; 20: 87-96
        • Jimenez G.
        • Spencer J.M.
        Erbium:YAG laser resurfacing of the hands, arms, and neck.
        Dermatol Surg. 1999; 25 ([discussion: 834–5]): 831-834
        • Hughes P.S.
        Skin contraction following erbium:YAG laser resurfacing.
        Dermatol Surg. 1998; 24: 109-111
        • Angermeier M.C.
        Treatment of facial vascular lesions with intense pulsed light.
        J Cutan Laser Ther. 1999; 1: 95-100
        • Goldman M.P.
        • Weiss R.A.
        • Weiss M.A.
        Intense pulsed light as a nonablative approach to photoaging.
        Dermatol Surg. 2005; 31 ([discussion: 1187]): 1179-1187
        • Bitter P.H.
        Noninvasive rejuvenation of photodamaged skin using serial, full-face intense pulsed light treatments.
        Dermatol Surg. 2000; 26 ([discussion: 843]): 835-842
        • Johnson F.
        • Dovale M.
        Intense pulsed light treatment of hirsutism: case reports of skin phototypes V and VI.
        J Cutan Laser Ther. 1999; 1: 233-237
        • Ransom E.R.
        • Antunes M.B.
        • Bloom J.D.
        • et al.
        Concurrent structural fat grafting and carbon dioxide laser resurfacing for perioral and lower face rejuvenation.
        J Cosmet Laser Ther. 2011; 13: 6-12
        • Kim E.M.
        • Bucky L.P.
        Power of the pinch: pinch lower lid blepharoplasty.
        Ann Plast Surg. 2008; 60: 532-537
        • Oni G.
        • Brown S.
        • Kenkel J.
        Comparison of five commonly-available, lidocaine-containing topical anesthetics and their effect on serum levels of lidocaine and its metabolite monoethylglycinexylidide (MEGX).
        Aesthet Surg J. 2012; 32: 495-503
        • Oni G.
        • Brown S.
        • Burrus C.
        • et al.
        Effect of 4% topical lidocaine applied to the face on the serum levels of lidocaine and its metabolite, monoethylglycinexylidide.
        Aesthet Surg J. 2010; 30: 853-858
        • Sadick N.
        Tissue tightening technologies: fact or fiction.
        Aesthet Surg J. 2008; 28: 180-188
        • Weinkle A.P.
        • Sofen B.
        • Emer J.
        Synergistic approaches to neck rejuvenation and lifting.
        J Drugs Dermatol. 2015; 14: 1215-1228
        • Sadick N.S.
        • Makino Y.
        Selective electro-thermolysis in aesthetic medicine: a review.
        Lasers Surg Med. 2004; 34: 91-97
        • Belenky I.
        • Margulis A.
        • Elman M.
        • et al.
        Exploring channeling optimized radiofrequency energy: a review of radiofrequency history and applications in esthetic fields.
        Adv Ther. 2012; 29: 249-266
        • Kennedy J.E.
        • Ter Haar G.R.
        • Cranston D.
        High intensity focused ultrasound: surgery of the future?.
        Br J Radiol. 2003; 76: 590-599
        • White W.M.
        • Makin I.R.
        • Barthe P.G.
        • et al.
        Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation.
        Arch Facial Plast Surg. 2007; 9: 22-29
        • Gliklich R.E.
        • White W.M.
        • Slayton M.H.
        • et al.
        Clinical pilot study of intense ultrasound therapy to deep dermal facial skin and subcutaneous tissues.
        Arch Facial Plast Surg. 2007; 9: 88-95
        • Fabi S.G.
        • Goldman M.P.
        Retrospective evaluation of micro-focused ultrasound for lifting and tightening the face and neck.
        Dermatol Surg. 2014; 40: 569-575
        • Alam M.
        • White L.E.
        • Martin N.
        • et al.
        Ultrasound tightening of facial and neck skin: a rater-blinded prospective cohort study.
        J Am Acad Dermatol. 2010; 62: 262-269
      2. Kenkel J. Evaluation of the Ulthera system for achieving lift and tightening cheek tissue, improving jawline definition and submental skin laxity. Paper presented at: American Society for Laser Medicine and Surgery. Boston, MA.

        • Oni G.
        • Hoxworth R.
        • Teotia S.
        • et al.
        Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face.
        Aesthet Surg J. 2014; 34: 1099-1110