Advertisement
Review Article| Volume 50, ISSUE 2, P357-366, April 2023

Modern Innovations in Breast Surgery: Robotic Breast Surgery and Robotic Breast Reconstruction

Published:January 25, 2023DOI:https://doi.org/10.1016/j.cps.2022.11.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Plastic Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Albus JS, United S, Robot Institute of A, Center for Mechanical E, Process T. NBS/RIA Robotics Research Workshop: proceedings of the NBS/RIA Workshop on Robotic Research, held at the National Bureau of Standards in Gaithersburg, MD, on November 13-15, 1979. NBS special publication ;602. U.S. Dept. of Commerce, National Bureau of Standards : For sale by the Supt. of Docs., U.S. G.P.O.; 1981:iv, 49 p.

        • Šabanović P.A.S.
        Victor Scheinman, an oral history.
        Indiana University, Bloomington, Indiana2010
        • Kwoh Y.S.
        • Hou J.
        • Jonckheere E.A.
        • et al.
        A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery.
        IEEE Trans Biomed Eng. 1988; 35: 153-160
        • Davies B.L.
        • Hibberd R.D.
        • Ng W.S.
        • et al.
        The development of a surgeon robot for prostatectomies.
        Proc Inst Mech Eng H. 1991; 205: 35-38
        • Leal Ghezzi T.
        • Campos Corleta O.
        30 years of robotic surgery.
        World J Surg. Oct 2016; 40: 2550-2557
        • Toesca A.
        • Peradze N.
        • Galimberti V.
        • et al.
        Robotic nipple-sparing mastectomy and immediate breast reconstruction with implant: first report of surgical technique.
        Ann Surg. 2017; 266: e28-e30
        • Sarfati B.
        • Honart J.F.
        • Leymarie N.
        • et al.
        Robotic da Vinci Xi-assisted nipple-sparing mastectomy: first clinical report.
        Breast J. 2018; 24: 373-376
        • Lai H.W.
        • Wang C.C.
        • Lai Y.C.
        • et al.
        The learning curve of robotic nipple sparing mastectomy for breast cancer: an analysis of consecutive 39 procedures with cumulative sum plot.
        Eur J Surg Oncol. 2019; 45: 125-133
        • Lai H.W.
        • Chen S.T.
        • Mok C.W.
        • et al.
        Robotic versus conventional nipple sparing mastectomy and immediate gel implant breast reconstruction in the management of breast cancer- A case control comparison study with analysis of clinical outcome, medical cost, and patient-reported cosmetic results.
        J Plast Reconstr Aesthet Surg. 2020; 73: 1514-1525
        • Lee J.
        • Park H.S.
        • Lee H.
        • et al.
        Post-operative complications and nipple necrosis rates between conventional and robotic nipple-sparing mastectomy.
        Front Oncol. 2020; 10: 594388
        • Houvenaeghel G.
        • Bannier M.
        • Rua S.
        • et al.
        Robotic breast and reconstructive surgery: 100 procedures in 2-years for 80 patients.
        Surg Oncol. 2019; 31: 38-45
        • Toesca A.
        • Invento A.
        • Massari G.
        • et al.
        Update on the feasibility and progress on robotic breast surgery.
        Ann Surg Oncol. 2019; 26: 3046-3051
        • Lai H.W.
        • Toesca A.
        • Sarfati B.
        • et al.
        Consensus statement on robotic mastectomy-expert panel from international endoscopic and robotic breast surgery symposium (IERBS) 2019.
        Ann Surg. 2020; 271: 1005-1012
        • Sarfati B.
        • Struk S.
        • Leymarie N.
        • et al.
        Robotic nipple-sparing mastectomy with immediate prosthetic breast reconstruction: surgical technique.
        Plast Reconstr Surg. 2018; 142: 624-627
        • Selber J.C.
        Robotic nipple-sparing mastectomy: the next step in the evolution of minimally invasive breast surgery.
        Ann Surg Oncol. 2019; 26: 10-11
        • Lai H.W.
        • Lin S.L.
        • Chen S.T.
        • et al.
        Robotic nipple-sparing mastectomy and immediate breast reconstruction with gel implant.
        Plast Reconstr Surg Glob Open. 2018; 6: e1828
        • Jeon D.N.
        • Kim J.
        • Ko B.S.
        • et al.
        Robot-assisted breast reconstruction using the prepectoral anterior tenting method.
        J Plast Reconstr Aesthet Surg. 2021; 74: 2906-2915
        • Park J.W.
        • Lee H.
        • Jeon B.J.
        • et al.
        Assessment of the risk of bulge/hernia formation after abdomen-based microsurgical breast reconstruction with the aid of preoperative computed tomographic angiography-derived morphometric measurements.
        J Plast Reconstr Aesthet Surg. 2020; 73: 1665-1674
        • Siegwart L.C.
        • Sieber L.
        • Fischer S.
        • et al.
        The Use of semi-absorbable mesh and its impact on donor-site morbidity and patient-reported outcomes in DIEP flap breast reconstruction.
        Aesthetic Plast Surg. 2021; 45: 907-916
        • Haddock N.T.
        • Culver A.J.
        • Teotia S.S.
        Abdominal weakness, bulge, or hernia after DIEP flaps: an algorithm of management, prevention, and surgical repair with classification.
        J Plast Reconstr Aesthet Surg. 2021; 74: 2194-2201
        • Elver A.A.
        • Matthews S.A.
        • Egan K.G.
        • et al.
        Characterizing outcomes of medial and lateral perforators in deep inferior epigastric perforator flaps.
        J Reconstr Microsurg. 2022; https://doi.org/10.1055/s-0042-1744310
        • Mortada H.
        • AlNojaidi T.F.
        • AlRabah R.
        • et al.
        Morbidity of the donor site and complication rates of breast reconstruction with autologous abdominal flaps: a systematic review and meta-analysis.
        Breast J. 2022; 2022: 7857158
        • Uda H.
        • Tomioka Y.K.
        • Sarukawa S.
        • et al.
        Comparison of abdominal wall morbidity between medial and lateral row-based deep inferior epigastric perforator flap.
        J Plast Reconstr Aesthet Surg. 2015; 68: 1550-1555
        • Rozen W.M.
        • Ashton M.W.
        • Kiil B.J.
        • et al.
        Avoiding denervation of rectus abdominis in DIEP flap harvest II: an intraoperative assessment of the nerves to rectus.
        Plast Reconstr Surg. 2008; 122: 1321-1325
        • Kamali P.
        • Lee M.
        • Becherer B.E.
        • et al.
        Medial row perforators are associated with higher rates of fat necrosis in bilateral DIEP flap breast reconstruction.
        Plast Reconstr Surg. 2017; 140: 19-24
        • Hembd A.
        • Teotia S.S.
        • Zhu H.
        • et al.
        Optimizing perforator selection: a multivariable analysis of predictors for fat necrosis and abdominal morbidity in DIEP flap breast reconstruction.
        Plast Reconstr Surg. 2018; 142: 583-592
        • Gundlapalli V.S.
        • Ogunleye A.A.
        • Scott K.
        • et al.
        Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: a case report.
        Microsurgery. 2018; 38: 702-705
        • Wittesaele W.
        • Vandevoort M.
        Implementing the Robotic deep inferior epigastric perforator Flap in daily practice: a series of 10 cases.
        J Plast Reconstr Aesthet Surg. 2022; 75: 2577-2583
        • Bishop S.N.
        • Asaad M.
        • Liu J.
        • et al.
        Robotic harvest of the deep inferior epigastric perforator flap for breast reconstruction: a case series.
        Plast Reconstr Surg. 2022; 149: 1073-1077
        • Daar D.A.
        • Anzai L.M.
        • Vranis N.M.
        • et al.
        Robotic deep inferior epigastric perforator flap harvest in breast reconstruction.
        Microsurgery. 2022; 42: 319-325
        • Piper M.
        • Ligh C.A.
        • Shakir S.
        • et al.
        Minimally invasive robotic-assisted harvest of the deep inferior epigastric perforator flap for autologous breast reconstruction.
        J Plast Reconstr Aesthet Surg. 2021; 74: 890-930
        • Selber J.C.
        The robotic DIEP flap.
        Plast Reconstr Surg. 2020; 145: 340-343
        • Kurlander D.E.
        • Le-Petross H.T.
        • Shuck J.W.
        • et al.
        Robotic DIEP patient selection: analysis of CT angiography.
        Plast Reconstr Surg Glob Open. 2021; 9: e3970
        • Jung J.H.
        • Jeon Y.R.
        • Lee D.W.
        • et al.
        Initial report of extraperitoneal pedicle dissection in deep inferior epigastric perforator flap breast reconstruction using the da Vinci SP.
        Arch Plast Surg. 2022; 49: 34-38
        • Choi J.H.
        • Song S.Y.
        • Park H.S.
        • et al.
        Robotic DIEP flap harvest through a totally extraperitoneal approach using a single-port surgical robotic system.
        Plast Reconstr Surg. 2021; 148: 304-307
        • Stephenson Jr., E.R.
        • Sankholkar S.
        • Ducko C.T.
        • et al.
        Robotically assisted microsurgery for endoscopic coronary artery bypass grafting.
        Ann Thorac Surg. 1998; 66: 1064-1067
        • Damiano Jr., R.J.
        • Ducko C.T.
        • Stephenson Jr., E.R.
        • et al.
        Robotically assisted coronary artery bypass grafting: a prospective single center clinical trial.
        J Cardiovasc Surg. 2000; 15: 256-265
        • Damiano Jr., R.J.
        • Tabaie H.A.
        • Mack M.J.
        • et al.
        Initial prospective multicenter clinical trial of robotically-assisted coronary artery bypass grafting.
        Ann Thorac Surg. 2001; 72 ([discussion: 1268-9]): 1263-1268
        • Li R.A.
        • Jensen J.
        • Bowersox J.C.
        Microvascular anastomoses performed in rats using a microsurgical telemanipulator.
        Comput Aided Surg. 2000; 5: 326-332
        • Karamanoukian R.L.
        • Finley D.S.
        • Evans G.R.
        • et al.
        Feasibility of robotic-assisted microvascular anastomoses in plastic surgery.
        J Reconstr Microsurg. 2006; 22: 429-431
        • Katz R.D.
        • Rosson G.D.
        • Taylor J.A.
        • et al.
        Robotics in microsurgery: use of a surgical robot to perform a free flap in a pig.
        Microsurgery. 2005; 25: 566-569
        • Katz R.D.
        • Taylor J.A.
        • Rosson G.D.
        • et al.
        Robotics in plastic and reconstructive surgery: use of a telemanipulator slave robot to perform microvascular anastomoses.
        J Reconstr Microsurg. 2006; 22: 53-57
        • Knight C.G.
        • Lorincz A.
        • Cao A.
        • et al.
        Computer-assisted, robot-enhanced open microsurgery in an animal model.
        J Laparoendosc Adv Surg Tech A. 2005; 15: 182-185
        • Selber J.C.
        Transoral robotic reconstruction of oropharyngeal defects: a case series.
        Plast Reconstr Surg. 2010; 126: 1978-1987
        • Alrasheed T.
        • Liu J.
        • Hanasono M.M.
        • et al.
        Robotic microsurgery: validating an assessment tool and plotting the learning curve.
        Plast Reconstr Surg. 2014; 134: 794-803
        • van Mulken T.J.M.
        • Boymans C.
        • Schols R.M.
        • et al.
        Preclinical experience using a new robotic system created for microsurgery.
        Plast Reconstr Surg. 2018; 142: 1367-1376
        • Selber J.C.
        • Alrasheed T.
        Robotic microsurgical training and evaluation.
        Semin Plast Surg. 2014; 28: 5-10
        • Boyd B.
        • Umansky J.
        • Samson M.
        • et al.
        Robotic harvest of internal mammary vessels in breast reconstruction.
        J Reconstr Microsurg. 2006; 22: 261-266
        • Lindenblatt N.
        • Grünherz L.
        • Wang A.
        • et al.
        Early experience using a new robotic microsurgical system for lymphatic surgery.
        Plast Reconstr Surg Glob Open. 2022; 10: e4013
        • van Mulken T.J.M.
        • Schols R.M.
        • Scharmga A.M.J.
        • et al.
        First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial.
        Nat Commun. 2020; 11: 757
        • Ballestín A.
        • Malzone G.
        • Menichini G.
        • et al.
        New robotic system with wristed microinstruments allows precise reconstructive microsurgery: preclinical study.
        Ann Surg Oncol. 2022; https://doi.org/10.1245/s10434-022-12033-x
        • Fine N.A.
        • Orgill D.P.
        • Pribaz J.J.
        Early clinical experience in endoscopic-assisted muscle flap harvest.
        Ann Plast Surg. 1994; 33 ([discussion: 469-72]): 465-469
        • Van Buskirk E.R.
        • Rehnke R.D.
        • Montgomery R.L.
        • et al.
        Endoscopic harvest of the latissimus dorsi muscle using the balloon dissection technique.
        Plast Reconstr Surg. 1997; 99 ([discussion: 904-5]): 899-903
        • Lin C.H.
        • Wei F.C.
        • Levin L.S.
        • et al.
        Donor-site morbidity comparison between endoscopically assisted and traditional harvest of free latissimus dorsi muscle flap.
        Plast Reconstr Surg. 1999; 104 ([quiz: 1078]): 1070-1077
        • Selber J.C.
        Robotic latissimus dorsi muscle harvest.
        Plast Reconstr Surg. 2011; 128: 88e-90e
        • Selber J.C.
        • Baumann D.P.
        • Holsinger C.F.
        Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience.
        J Reconstr Microsurg. 2012; 28: 457-464
        • Selber J.C.
        • Baumann D.P.
        • Holsinger F.C.
        Robotic latissimus dorsi muscle harvest: a case series.
        Plast Reconstr Surg. 2012; 129: 1305-1312
        • Lai H.W.
        • Lin S.L.
        • Chen S.T.
        • et al.
        Robotic nipple sparing mastectomy and immediate breast reconstruction with robotic latissimus dorsi flap harvest - technique and preliminary results.
        J Plast Reconstr Aesthet Surg. 2018; 71: e59-e61
        • Fouarge A.
        • Cuylits N.
        From open to robotic-assisted latissimus dorsi muscle flap harvest.
        Plast Reconstr Surg Glob Open. 2020; 8: e2569
        • Mericli A.F.
        • Szpalski C.
        • Schaverien M.V.
        • et al.
        The latissimus dorsi myocutaneous flap is a safe and effective method of partial breast reconstruction in the setting of breast-conserving therapy.
        Plast Reconstr Surg. 2019; 143: 927e-935e
        • Lai H.W.
        • Chen S.T.
        • Lin S.L.
        • et al.
        Technique for single axillary incision robotic assisted quadrantectomy and immediate partial breast reconstruction with robotic latissimus dorsi flap harvest for breast cancer: a case report.
        Medicine (Baltimore). 2018; 97: e11373
        • Shuck J.
        • Asaad M.
        • Liu J.
        • et al.
        Prospective pilot study of robotic-assisted harvest of the latissimus dorsi muscle: a 510(k) approval study with U.S. food and drug administration investigational device exemption.
        Plast Reconstr Surg. 2022; 149: 1287-1295